

Cloud Application Security Assessment
(CASA) Letter of Assessment (LOA) for:
MailMeteor’s MailMeteor Application

Prepared by NCC Group
August 6th, 2022

© 2022 NCC Group
Prepared by NCC Group Security Services, Inc. for and on behalf of Developer. Portions
of this document and the templates used in its production are the property of NCC Group
and cannot be copied or disclosed (in full or in part) without NCC Group's permission.
The findings and opinions contained herein are only applicable to the Application as
tested on the date(s) of testing and subject to the agreed upon scope of works. NCC
Group provided the Services to Developer only and NCC Group accepts no liability to any
other party that relies on this LOA.

Prepared by NCC Group for Developer Page 2 of 10

In May of 2022, NCC Group performed a Full Cloud Application Security Assessment (CASA)
against MailMeteor (the “Application”) for MailMeteor and on behalf of Google, Inc.
(“Developer”) pursuant to the governing contract(s) between NCC Group and Developer. The
assessment objective was to identify compliance with the CASA framework within a time-boxed
assessment. CASA is defined by the App Defense Alliance (ADA) and is based on the OWASP
Application Security Verification Standard (ASVS). For more specific information on the specific
requirements assessed, please see Appendix A.

This Letter of Assessment (“LOA”) confirms that the assessment of the Application has been
completed and was found to substantially comply with the requirements in Appendix A.

It is important to note that this LOA represents a point-in-time evaluation. The security and
compliance of an application can evolve rapidly, and the results of this assessment are not
intended to represent an endorsement of the Application’s future compliance or adequacy of
current security measures against future threats. This LOA necessarily contains information in
summary form and is therefore intended for general guidance only; it is not intended as a
substitute for detailed research or the exercise of professional judgment. The information
presented here should not be construed as professional advice or service.

Technical Constraints

The following items may impact the completeness and accuracy of the test case results:

 The CASA framework was in active development during the assessment. Some controls
may have been modified during or after the testing period.

 Some controls employed ambiguous language. When presented with equally valid
interpretations of a control, NCC Group selected the strictest version unless otherwise
directed by Google.

 The assessment was designed to support Google’s product risk management and
assessment scope was limited to functionality that would affect Google Restricted Scopes.

Terms, Limitations and Disclaimers

 Prepared by NCC Group Security Services, Inc. for Developer.
 Portions of this document and the templates used in its production are the property of

NCC Group and cannot be copied or disclosed (in full or in part) without NCC Group’s
prior written permission.

 While precautions have been taken in the preparation of this document, NCC Group the
publisher, and the author(s) assume no responsibility for errors, omissions, or for damages
resulting from the use of the information contained herein.

Prepared by NCC Group for Developer Page 3 of 10

 NCC Group provides no warranty or guarantee that any of NCC Group’s services including
but not limited to, recommendations, results or assessments will prevent or avoid any
future security breaches or unauthorized access to the Application or Developer’s
networks or systems.

 CASA is intended to provide more transparency into application security, however the
limited nature of testing does not guarantee complete safety of the Application. This
independent review may not be scoped to verify the accuracy and completeness of a
developer's data safety declarations. Developer remains solely responsible for making
complete and accurate declarations in their app's Google listings.

 NCC Group further expressly disclaims all warranties and conditions of any kind, whether
express or implied, including, but not limited to the implied warranties and conditions of
merchantability, fitness for a particular purpose and non-infringement.

Prepared by NCC Group for Developer Page 4 of 10

APPENDIX (A)
CASA Full Requirements

Category # Description

Configuration
Architecture

1.14.6 Verify the application does not use unsupported, insecure,
or deprecated client-side technologies such as NSAPI
plugins, Flash, Shockwave, ActiveX, Silverlight, NACL, or
client-side Java applets.

Password Security 2.1.1 Verify that user set passwords are at least 12 characters in
length (after multiple spaces are combined).

Password Security 2.1.2 Verify that passwords of at least 64 characters are
permitted, and that passwords of more than 128 characters
are denied.

Password Security 2.1.5 Verify users can change their password.
Password Security 2.1.6 Verify that password change functionality requires the

user's current and new password.

Password Security 2.1.8 Verify that a password strength meter is provided to help
users set a stronger password.

Password Security 2.1.12 Verify that the user can choose to either temporarily view
the entire masked password, or temporarily view the last
typed character of the password on platforms that do not
have this as built-in functionality.

General Authenticator
Security

2.2.1 Verify that anti-automation controls are effective at
mitigating breached credential testing, brute force, and
account lockout attacks. Such controls include blocking the
most common breached passwords, soft lockouts, rate
limiting, CAPTCHA, ever increasing delays between
attempts, IP address restrictions, or risk-based restrictions
such as location, first login on a device, recent attempts to
unlock the account, or similar. Verify that no more than 100
failed attempts per hour is possible on a single account.

General Authenticator
Security

2.2.3 Verify that secure notifications are sent to users after
updates to authentication details, such as credential resets,
email or address changes, logging in from unknown or risky
locations. The use of push notifications - rather than SMS
or email - is preferred, but in the absence of push
notifications, SMS or email is acceptable as long as no
sensitive information is disclosed in the notification.

Authenticator Lifecycle 2.3.1 Verify system generated initial passwords or activation
codes SHOULD be securely randomly generated,
SHOULD be at least 6 characters long, and MAY contain
letters and numbers, and expire after a short period of time.

Prepared by NCC Group for Developer Page 5 of 10

These initial secrets must not be permitted to become the
long term password.

Credential Recovery 2.5.1 Verify that a system generated initial activation or recovery
secret is not sent in clear text to the user.

Credential Recovery 2.5.2 Verify password hints or knowledge-based authentication
(so-called "secret questions") are not present.

Credential Recovery 2.5.3 Verify password credential recovery does not reveal the
current password in any way.

Credential Recovery 2.5.4 Verify shared or default accounts are not present (e.g.
"root", "admin", or "sa").

Credential Recovery 2.5.5 Verify that if an authentication factor is changed or
replaced, that the user is notified of this event.

Credential Recovery 2.5.6 Verify forgotten password, and other recovery paths use a
secure recovery mechanism, such as time-based OTP
(TOTP) or other soft token, mobile push, or another offline
recovery mechanism.

Out of Band Verifier 2.7.3 Verify that the out of band verifier authentication requests,
codes, or tokens are only usable once, and only for the
original authentication request.

Out of Band Verifier 2.7.4 Verify that the out of band authenticator and verifier
communicates over a secure independent channel.

Single or Multi-factor
One Time Verifier

2.8.6 Verify physical single-factor OTP generator can be revoked
in case of theft or other loss. Ensure that revocation is
immediately effective across logged in sessions,
regardless of location.

Single or Multi-factor
One Time Verifier

2.8.7 Verify that biometric authenticators are limited to use only
as secondary factors in conjunction with either something
you have and something you know.

Fundamental Session
Management Security

3.1.1 Verify the application never reveals session tokens in URL
parameters.

Session Binding 3.2.1 Verify the application generates a new session token on
user authentication.

Session Termination 3.3.1 Verify that logout and expiration invalidate the session
token, such that the back button or a downstream relying
party does not resume an authenticated session, including
across relying parties.

Session Termination 3.3.3 Verify that the application gives the option to terminate all
other active sessions after a successful password change
(including change via password reset/recovery), and that

Prepared by NCC Group for Developer Page 6 of 10

this is effective across the application, federated login (if
present), and any relying parties.

Session Termination 3.3.4 Verify that users are able to view and (having re-entered
login credentials) log out of any or all currently active
sessions and devices.

Cookie-based Session
Management

3.4.1 Verify that cookie-based session tokens have the 'Secure'
attribute set.

Cookie-based Session
Management

3.4.2 Verify that cookie-based session tokens have the 'HttpOnly'
attribute set.

Cookie-based Session
Management

3.4.3 Verify that cookie-based session tokens utilize the
'SameSite' attribute to limit exposure to cross-site request
forgery attacks.

Cookie-based Session
Management

3.4.4 Verify that cookie-based session tokens use the "__Host-"
prefix so cookies are only sent to the host that initially set
the cookie.

Cookie-based Session
Management

3.4.5 Verify that if the application is published under a domain
name with other applications that set or use session
cookies that might disclose the session cookies, set the
path attribute in cookie-based session tokens using the
most precise path possible.

Token-based Session
Management

3.5.1 Verify the application allows users to revoke OAuth tokens
that form trust relationships with linked applications.

Token-based Session
Management

3.5.2 Verify the application uses session tokens rather than static
API secrets and keys, except with legacy implementations.

Token-based Session
Management

3.5.3 Verify that stateless session tokens use digital signatures,
encryption, and other countermeasures to protect against
tampering, enveloping, replay, null cipher, and key
substitution attacks.

Defenses Against
Session Management
Exploits

3.7.1 Verify the application ensures a full, valid login session or
requires re-authentication or secondary verification before
allowing any sensitive transactions or account
modifications.

General Access
Control Design

4.1.1 Verify that the application enforces access control rules on
a trusted service layer, especially if client-side access
control is present and could be bypassed.

General Access
Control Design

4.1.2 Verify that all user and data attributes and policy
information used by access controls cannot be manipulated
by end users unless specifically authorized.

General Access
Control Design

4.1.3 Verify that the principle of least privilege exists - users
should only be able to access functions, data files, URLs,
controllers, services, and other resources, for which they
possess specific authorization. This implies protection
against spoofing and elevation of privilege.

Prepared by NCC Group for Developer Page 7 of 10

General Access
Control Design

4.1.5 Verify that access controls fail securely including when an
exception occurs.

Operation Level
Access Control

4.2.1 Verify that sensitive data and APIs are protected against
Insecure Direct Object Reference (IDOR) attacks targeting
creation, reading, updating and deletion of records, such as
creating or updating someone else's record, viewing
everyone's records, or deleting all records.

Operation Level
Access Control

4.2.2 Verify that the application or framework enforces a strong
anti-CSRF mechanism to protect authenticated
functionality, and effective anti-automation or anti-CSRF
protects unauthenticated functionality.

Other Access Control
Considerations

4.3.2 Verify that directory browsing is disabled unless
deliberately desired. Additionally, applications should not
allow discovery or disclosure of file or directory metadata,
such as Thumbs.db, .DS_Store, .git or .svn folders.

Input Validation 5.1.1 Verify that the application has defenses against HTTP
parameter pollution attacks, particularly if the application
framework makes no distinction about the source of
request parameters (GET, POST, cookies, headers, or
environment variables).

Input Validation 5.1.2 Verify that frameworks protect against mass parameter
assignment attacks, or that the application has
countermeasures to protect against unsafe parameter
assignment, such as marking fields private or similar.

Input Validation 5.1.5 Verify that URL redirects and forwards only allow
destinations which appear on an allow list, or show a
warning when redirecting to potentially untrusted content.

Sanitization and
Sandboxing

5.2.4 Verify that the application avoids the use of eval() or other
dynamic code execution features. Where there is no
alternative, any user input being included must be sanitized
or sandboxed before being executed.

Sanitization and
Sandboxing

5.2.5 Verify that the application protects against template
injection attacks by ensuring that any user input being
included is sanitized or sandboxed.

Sanitization and
Sandboxing

5.2.6 Verify that the application protects against SSRF attacks,
by validating or sanitizing untrusted data or HTTP file
metadata, such as filenames and URL input fields, and
uses allow lists of protocols, domains, paths and ports.

Sanitization and
Sandboxing

5.2.7 Verify that the application sanitizes, disables, or sandboxes
user-supplied Scalable Vector Graphics (SVG) scriptable
content, especially as they relate to XSS resulting from
inline scripts, and foreignObject.

Sanitization and
Sandboxing

5.2.8 Verify that the application sanitizes, disables, or sandboxes
user-supplied scriptable or expression template language

Prepared by NCC Group for Developer Page 8 of 10

content, such as Markdown, CSS or XSL stylesheets,
BBCode, or similar.

Output Encoding and
Injection Protection

5.3.3 Verify that context-aware, preferably automated - or at
worst, manual - output escaping protects against reflected,
stored, and DOM based XSS.

Output Encoding and
Injection Protection

5.3.4 Verify that data selection or database queries (e.g. SQL,
HQL, ORM, NoSQL) use parameterized queries, ORMs,
entity frameworks, or are otherwise protected from
database injection attacks.

Output Encoding and
Injection Protection

5.3.5 Verify that where parameterized or safer mechanisms are
not present, context-specific output encoding is used to
protect against injection attacks, such as the use of SQL
escaping to protect against SQL injection.

Output Encoding and
Injection Protection

5.3.6 Verify that the application protects against JSON injection
attacks, JSON eval attacks, and JavaScript expression
evaluation.

Output Encoding and
Injection Protection

5.3.8 Verify that the application protects against OS command
injection and that operating system calls use parameterized
OS queries or use contextual command line output
encoding.

Output Encoding and
Injection Protection

5.3.9 Verify that the application protects against Local File
Inclusion (LFI) or Remote File Inclusion (RFI) attacks.

Output Encoding and
Injection Protection

5.3.10 Verify that the application protects against XPath injection
or XML injection attacks.

Deserialization
Prevention

5.5.1 Verify that serialized objects use integrity checks or are
encrypted to prevent hostile object creation or data
tampering.

Deserialization
Prevention

5.5.2 Verify that the application correctly restricts XML parsers to
only use the most restrictive configuration possible and to
ensure that unsafe features such as resolving external
entities are disabled to prevent XML eXternal Entity (XXE)
attacks.

Error Handling 7.4.1 Verify that a generic message is shown when an
unexpected or security sensitive error occurs, potentially
with a unique ID which support personnel can use to
investigate.

Client-Side Data
Protection

8.2.1 Verify the application sets sufficient anti-caching headers
so that sensitive data is not cached in modern browsers.

Client-Side Data
Protection

8.2.3 Verify that authenticated data is cleared from client storage,
such as the browser DOM, after the client or session is
terminated.

Sensitive Private Data 8.3.1 Verify that sensitive data is sent to the server in the HTTP
message body or headers, and that query string
parameters from any HTTP verb do not contain sensitive
data.

Prepared by NCC Group for Developer Page 9 of 10

Client Communication
Security

9.1.1 Verify that TLS is used for all client connectivity, and does
not fall back to insecure or unencrypted communications.

Client Communication
Security

9.1.2 Verify using up to date TLS testing tools that only strong
cipher suites are enabled, with the strongest cipher suites
set as preferred.

Client Communication
Security

9.1.3 Verify that only the latest recommended versions of the
TLS protocol are enabled, such as TLS 1.2 and TLS 1.3.
The latest version of the TLS protocol should be the
preferred option.

Malicious Code
Search

10.2.2 Verify that the application does not ask for unnecessary or
excessive permissions to privacy related features or
sensors, such as contacts, cameras, microphones, or
location.

File Integrity 12.3.1 Verify that user-submitted filename metadata is not used
directly by system or framework filesystems and that a URL
API is used to protect against path traversal.

File Execution 12.3.3 Verify that user-submitted filename metadata is validated
or ignored to prevent the disclosure or execution of remote
files via Remote File Inclusion (RFI) or Server-side Request
Forgery (SSRF) attacks.

File Execution 12.3.6 Verify that the application does not include and execute
functionality from untrusted sources, such as unverified
content distribution networks, JavaScript libraries, node
npm libraries, or server-side DLLs.

File Download 12.5.1 Verify that the web tier is configured to serve only files with
specific file extensions to prevent unintentional information
and source code leakage. For example, backup files (e.g.
.bak), temporary working files (e.g. .swp), compressed files
(.zip, .tar.gz, etc) and other extensions commonly used by
editors should be blocked unless required.

File Download 12.5.2 Verify that direct requests to uploaded files will never be
executed as HTML/JavaScript content.

Generic Web Service
Security

13.1.3 Verify API URLs do not expose sensitive information, such
as the API key, session tokens etc.

Generic Web Service
Security

13.1.5 Verify that requests containing unexpected or missing
content types are rejected with appropriate headers (HTTP
response status 406 Unacceptable or 415 Unsupported
Media Type).

RESTful Web Service 13.2.2 Verify that JSON schema validation is in place and verified
before accepting input.

RESTful Web Service 13.2.3 Verify that RESTful web services that utilize cookies are
protected from Cross-Site Request Forgery via the use of
at least one or more of the following: double submit cookie
pattern, CSRF nonces, or Origin request header checks.

Prepared by NCC Group for Developer Page 10 of 10

RESTful Web Service 13.2.5 Verify that REST services explicitly check the incoming
Content-Type to be the expected one, such as
application/xml or application/json.

SOAP Web Service 13.3.1 Verify that XSD schema validation takes place to ensure a
properly formed XML document, followed by validation of
each input field before any processing of that data takes
place.

Dependency 14.2.1 Verify that all components are up to date, preferably using
a dependency checker during build or compile time.

Unintended Security
Disclosure

14.3.2 Verify that web or application server and application
framework debug modes are disabled in production to
eliminate debug features, developer consoles, and
unintended security disclosures.

Unintended Security
Disclosure

14.4.1 Verify that every HTTP response contains a Content-Type
header. Also specify a safe character set (e.g., UTF-8, ISO-
8859-1) if the content types are text/*, /+xml and
application/xml. Content must match with the provided
Content-Type header.

Unintended Security
Disclosure

14.4.2 Verify that all API responses contain a Content-Disposition:
attachment; filename="api.json" header (or other
appropriate filename for the content type).

Unintended Security
Disclosure

14.4.3 Verify that a Content Security Policy (CSP) response
header is in place that helps mitigate impact for XSS
attacks like HTML, DOM, JSON, and JavaScript injection
vulnerabilities.

Unintended Security
Disclosure

14.4.5 Verify that a Strict-Transport-Security header is included on
all responses and for all subdomains, such as Strict-
Transport-Security: max-age=15724800;
includeSubdomains.

Unintended Security
Disclosure

14.4.7 Verify that the content of a web application cannot be
embedded in a third-party site by default and that
embedding of the exact resources is only allowed where
necessary by using suitable Content-Security-Policy:
frame-ancestors and X-Frame-Options response headers.

HTTP Security
Headers

14.5.2 Verify that the supplied Origin header is not used for
authentication or access control decisions, as the Origin
header can easily be changed by an attacker.

HTTP Security
Headers

14.5.3 Verify that the Cross-Origin Resource Sharing (CORS)
Access-Control-Allow-Origin header uses a strict allow list
of trusted domains and subdomains to match against and
does not support the "null" origin.

The “Category” and “#” columns refer to the related OWASP Application Security Verification
Standard (ASVS) requirements upon which the listed CASA requirement is based.

